Planning with Large Language
Models for Code Generation

Shun Zhang! Zhenfang Chen! Yikang Shenl Mingyu Ding® Joshua B. Tenenbaum? Chuang Ganl4
IMIT-IBM Watson Al Lab, 2MIT, 3The University of Hong Kong, “UMass Amherst

Code Generation from Natural Language
Descriptions

Problem Statement

Given is a string S. Replace every character in S with x and print the result.
Constraints

(1). S is a string consisting of lowercase English letters.

(2). The length of S is between 1 and 100 (inclusive).
Input

Input is given from Standard Input in the following format: S
Output

Replace every character in S with x and print the result.
Sample Test Input

sardine
Sample Test Output

BEDDTLD

Code-Generation Transformer

How should we generate codes?

Code

Problem Statement
Given is a string S. Replace every character in S with x and print the result.
Constraints
(1). S is a string consisting of lowercase English letters.
(2). The length of S is between 1 and 100 (inclusive).
Input
Input is given from Standard Input in the following format: S
Output
Replace every character in S with x and print the result.
Sample Test Input
sardine
Sample Test Output
TLTLLTL
| s=input()
s=1ist(s)
i range(len(s)):
j range(len(s)):
s[i] '
s[il=j
print("".join(s))

Beam Search (Pass Rate: 0.00).

Hendrycks, Dan, et al. "Measuring coding challenge competence with APPS." arXiv preprint arXiv:2105.09938 (2021).

A Well-Accepted Approach:

Sampling + Filtering

o« We sample a large number of

Transformer

programs using Transformer, run
them on some test cases, and select
the program that passes the most B
number of test cases. o

o Used in DeepMind’s AlphaCode (Li
et al. 2022). ’

v

Program 1

Pass rate 0.1

Li, Yujia, et al. "Competition-level code generation with alphacode." Science 378.6624 (2022): 1092-1097.

0.9

Program 3

0.3

Problem Statement

Given is a string S. Replace every character in S with x and print the result.
Constraints

(1). S is a string consisting of lowercase English letters.

(2). The length of S is between 1 and 100 (inclusive).
Input

Input is given from Standard Input in the following format: S
Output

Replace every character in S with x and print the result.

Sample Test Input
sardine
Sample Test Output
TLBTTLT
s=input() | s=input()
2 s=list(s) s=1list(s)
‘ i range(len(s)): g i range(len(s)):
j range(len(s)): 4 s[il
s[i] > s[il
s[i]=] :

print("".join(s)) ’

) print(join(s))

Beam Search (Pass Rate: 0.00). Sampling + Filtering (Pass Rate:
0.22).

What’s wrong with Sampling + Filtering?

* Sampling + Filtering is not efficient for <Problem Description>
COde generation- Prob.O.% Prob. 0.1
* Our contribution: using a planning # n

algorithm (a tree search algorithm)
that actively searches for programs
with higher pass rates.

v v
Pass Rate Pass Rate
~0.2 ~0.8

—> Selection » Expansion > Evaluation —— Backpropagation —

<PD> <PD> <PD> <PD>
d X d X d X d X
a X : X a X a X
) \\) /')))))
oA
|
a= , a= a, | X, a= a, , a= a, ,
| _
I /\
|
_____________________ |
suggests next tokens _______ . a,b a,\n

Pre-Trained ”: ______________
z Evaluate on
Transformer : generates complete
S rograms test cases

Empirical Results

Pass Rate (%) Strict Accuracy (%)
APPS Intro. APPS Inter. APPS comp. CodeContests APPS Intro. APPS Inter. APPS comp. CodeContests
APPS GPT-2 Beam Search 11.95 9.55 5.04 5.10 5.50 2.10 1.00 0.00
Sampling+Filtering 25.19 24.13 11.92 20.40 13.80 5.70 2.30 3.64
SMCG-TD 24.10 21.98 10.37 17.47 11.70 5.50 2.10 4.24
PG-TD (c = 4) 26.70 24.92 12.89 24.05 13.10 6.10 3.10 4.85
APPS GPT-Neo Beam Search 14.32 9.80 6.39 5.73 6.70 2.00 2.10 0.00
Sampling+Filtering 27.71 24.85 12.55 25.26 15.50 5.80 3.00 4.24
SMCG-TD 25.09 20.34 9.16 15.44 13.80 5.10 1.80 3.03
PG-TD (c = 4) 29.27 25.69 13.55 26.07 15.50 6.43 3.50 4.85

12

Empirical Results

Evaluated on the APPS introductory-level problems.

Pass Rate (%)

N
(00

N
(@)

N
H

N
N

1000 2000 3000
Computation Time (sec.)

—#«— SMCG-TD

—m— Sampling + Filtering
-®- PG-TD (c=2)

—— PG-TD (c=4)

—&- PG-TD (c=6)

13

Summary

* Effectiveness: We contributed an algorithm that combines the
advantages of Transformer and a planning algorithm and empirically
showed that it generates problems with better quality.

e Efficiency: We empirically show that our algorithm is more efficient
than sampling-based methods.

* Generalization: Our framework can be used to optimize different
objectives without fine-tuning the Transformer model.

* Generating shorter codes, codes with more comments.

Website: https://codeaimcts.github.io/

https://codeaimcts.github.io/

