When a human user specifies a goal for a robot to achieve, the robot may find its policy cause side effects that the user may think unsafe. How should the robot efficiently query the human to find a guaranteed-safe policy (if one exists)?

Querying to Find a Safe Policy Under Uncertain Safety Constraints in Markov Decision Processes

Shun Zhang, Edmund H. Durfee, and Satinder Singh. University of Michigan

MOTIVATION

- Robot's policy to optimize its user's reward may have unexpected, possibly unsafe, side effects.
- Robot can **query** the user to find out which (if any) side effects are safe.
- Robot queries until it finds a safe policy, or proves that none exists.

METHOD

Observation: Finding a safe policy and proving that no safe policy exists each corresponds to a set cover problem.

OUR QUERY-SELECTION ALGORITHMS

- Our algorithms are based on irreducible infeasible sets (IIS) (Chinneck, 2007) and adaptive submodularity (Golovin and Krause 2011).
- h_{sc} (set cover). Robot selects the query that makes the most progress in covering both sets in expectation.
- h_{ICR} (inverse cover ratio). Robot selects a query by estimating the number of queries needed to

cover each set. It has better

performance than h_{sc} with slightly more computation.

EXPERIMENTS

Our algorithms have the

closest performance to

the **optimal** query.

Finding the optimal query can be **computationally intractable**.

OBJECTIVE Minimize the number of queries needed, in expectation, to either find a safe policy or prove none exists.

Solution: **Efficient iterative query selection algorithms** that solve both set cover problems simultaneously.

RESULTS

Our query algorithms find **better queries** than greedy-heuristic algorithms and are **computationally cheaper** than brute-force methods.

Our algorithms are **robustly** closest to the optimal query under different probabilities of changeability of features.

Scan m downlo

