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Motivating Example
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Turn off the switch.

Concerns: Policies often have side effects.
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RobotHuman

Preference / 
Goal

Reward function: r

The optimal policy 
with no side effects 
under r.

Baseline Performance

In this work, we allow the robot to query about the allowability of side effects.



Contributions

● We formulate the AI safety problem of avoiding negative side-effects in factored 
MDPs.

● If the robot can ask one query about if some side-effects are allowable, we show how to 
efficiently find a minimax-regret query.
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The domain is a factored MDP and known to the robot.
States are represented by a set of features 

Problem Formulation: Factored Representation
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An example state:
(RobotLocation = intial_location,
Door1 = open,
Carpet = clean, … )



The domain is a factored MDP and known to the robot.
States are represented by a set of features 

Negative side-effects arise when a human’s locked feature is changed.

Problem Formulation: Factored Representation
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Problem Formulation: Factored Representation

The domain is a factored MDP and known to the robot.
States are represented by a set of features 

Negative side-effects arise when a human’s locked feature is changed.
Safety constraints: The robot never changes any known-to-be-locked or unknown 
features.
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Problem Formulation: k-Feature Queries

RobotHuman

Preference / 
Goal

Reward function: r

Is it okay if I move 
Box 1 or Box 2?

(k = 2)
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Problem Formulation: k-Feature Queries
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RobotHuman

Preference / 
Goal

Reward function: r

Is it okay if I move 
Box 1 or Box 2?

You can move Box 1, but 
you can’t move Box 2.

(k = 2)

unknown
(known-to-be)
locked

1 2 3 1

(known-to-be)
free

1 23
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Method: A Two-Step Procedure

● Find the relevant features. Efficiently and provably finding all relevant features 
(Algorithm DomPis in the paper).

● Find an optimal k-feature query.
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Method: A Two-Step Procedure

● Find the relevant features. Efficiently and provably finding all relevant features 
(Algorithm DomPis in the paper).

● Find an optimal k-feature query.
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Example: k = 2



Minimax-Regret Queries
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The objective is to find a query that has the minimax regret.

(V*|q’,          - V*|q,         locked free locked free

The value of the optimal policy if q is asked
and the partition of features in the human’s mind 
is locked free



Minimax-Regret Queries
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The objective is to find a query that has the minimax regret.

(V*|q’,          - V*|q,          )

regret of asking q instead of q’ under 

locked free

locked free

locked free



Minimax-Regret Queries
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The objective is to find a query that has the minimax regret.

max
q’, locked free (V*|q’,          - V*|q,          )

maximum (worst-case) regret of asking q

locked free

regret of asking q instead of q’ under locked free

locked free



Minimax-Regret Queries
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The objective is to find a query that has the minimax regret.

min
  q

max
q’, locked free (V*|q’,          - V*|q,          )

minimax regret

locked free

regret of asking q instead of q’ under locked free

maximum (worst-case) regret of asking q

locked free



Find a Minimax-Regret k-Feature Query

Our algorithm MMRQ-k provably finds a minimax-regret query without evaluating all 
k-feature queries using the following techniques:
Early stopping when it finds a set of sufficient features.
Pruning some unevaluated queries by query dominance.
(More details in the paper.)
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Evaluation: Robot Navigation
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MMRQ-k always finds the minimax-regret 
query.

A 6x6 domain with 10 uniformly randomly placed carpets.



Evaluation: Robot Navigation
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MMRQ-k is less efficient than the greedy 
approach.

A 6x6 domain with 10 uniformly randomly placed carpets.

The greedy approach has worse 
performance compared with MMRQ-k.



Evaluation: Robot Navigation
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MMRQ-k is less efficient than the greedy 
approach.

A 6x6 domain with 10 uniformly randomly placed carpets.

MMRQ-k is much more efficient 
than the brute force method.

The greedy approach has worse 
performance compared with MMRQ-k.



Summary

● Formulation of avoiding negative side-effects in factored MDPs.
● An algorithm that provably and efficiently finds relevant features.
● An algorithm that provably and efficiently finds minimax-regret queries given a limit on 

the number of features the robot can ask about.
● Future work: approximate methods; other changeability assumptions.
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Backup Slides
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Safely-Optimal Policy

A safely-optimal policy is the optimal policy that does not change locked features or unknown 
features. It can be found by solving a linear programming problem.
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occupancy frequency on state, action pairs

1 if s’ = s0; 0 otherwise

States with changed locked features or 
unknown features should not be visited.



Construction of the Set of Dominating Policies
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We use a greedy construction method to find all 
relevant features.

Correctness: Our algorithm finds all relevant features 
(and only relevant features).

Efficiency: Computation time is exponential in the 
number of relevant features in the worst case.
The paper specifies a pruning rule to avoid considering 
all subsets of relevant features.



Construction of the Set of Dominating Policies: Algorithm

Correctness: guaranteed to find all relevant 
features.

Computational efficiency: exponential in the 
number of relevant features in the worst case.
The efficiency can be improved with pruning:

25

π

Φrel(π)

Φ Φ’



Minimax-Regret k-Feature Queries
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The pairwise maximum regret of asking Φq rather than Φq’.

The maximum regret of asking Φq.

The minimax-regret k-feature query.

Defined similar to Regan and Boutilier (2010)

The utility of a k-feature query Φq when ΦC are the changeable features. Φq
ΦC

Φ?

Features changeable 
by the robot



Minimax-Regret Queries
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Worst-case regret: 10 Worst-case regret: 1

Example: k = 2.

The objective is to find a query that has the minimax regret.
A greedy approach based on a prior work (Viappiani and Boutilier, 2009) may not always find 
a minimax-regret query.
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Chain of Adversaries

An efficient greedy construction 
algorithm that is linear in k.

It may not find the minimax-regret 
query.
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Motivated by Viappiani and Boutilier (2009).

Consider what features an adversary wants to 
change when we asks our current query, and add 
those features to our query.



Office Navigation: Domain Description

The robot is tasked to turn off a switch at a corner.

The domain is 6x6 with 10 uniformly randomly placed 
carpets.

The reward is 0 to for any location with a carpet, and 
uniformly random in [-1, 0] for any location without a 
carpet. So the robot prefers to walk on the carpets.

Each carpet corresponds to one unknown feature. The 
robot initially does not know if it can traverse any carpet.
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More Empirical Results
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