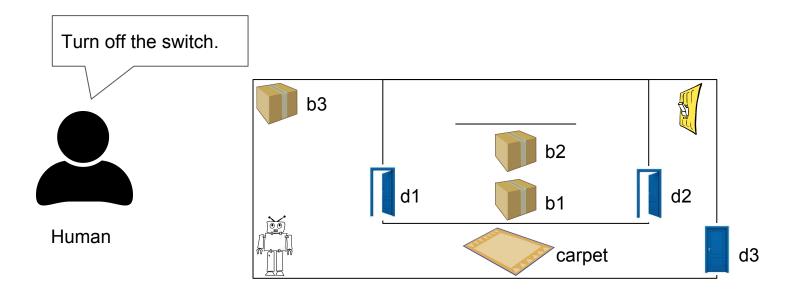
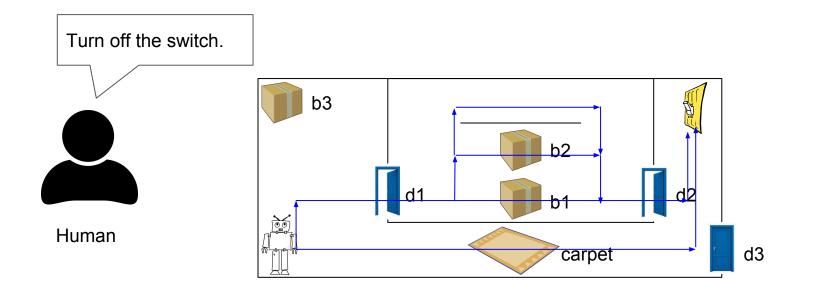
Minimax-Regret Querying on Side Effects for Safe Optimality in Factored Markov Decision Processes

Shun Zhang, Edmund H. Durfee, and Satinder Singh University of Michigan

Motivating Example

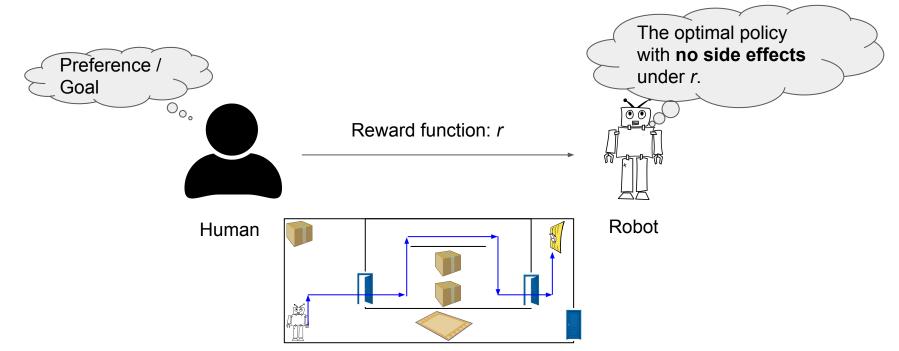


Motivating Example



Concerns: Policies often have side effects.

Baseline Performance



In this work, we allow the robot to **query** about the allowability of side effects.

Contributions

- We formulate the AI safety problem of **avoiding negative side-effects** in factored MDPs.
- If the robot can ask one query about if some side-effects are allowable, we show how to efficiently find a **minimax-regret query**.

Problem Formulation: Factored Representation

The domain is a factored MDP and known to the robot. States are represented by a set of features $\{\phi_1, \phi_2, \dots, \phi_n\}$

An example state: (**RobotLocation** = intial_location, **Door1** = open, **Carpet** = clean, ...)

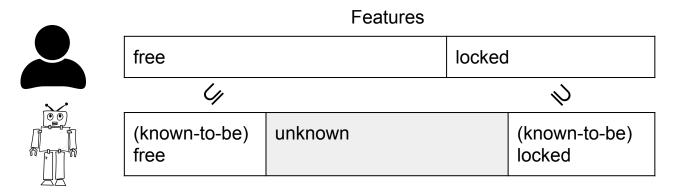
Problem Formulation: Factored Representation

The domain is a factored MDP and known to the robot. States are represented by a set of features $\{\phi_1, \phi_2, \dots, \phi_n\}$

Negative side-effects arise when a human's locked feature is changed.

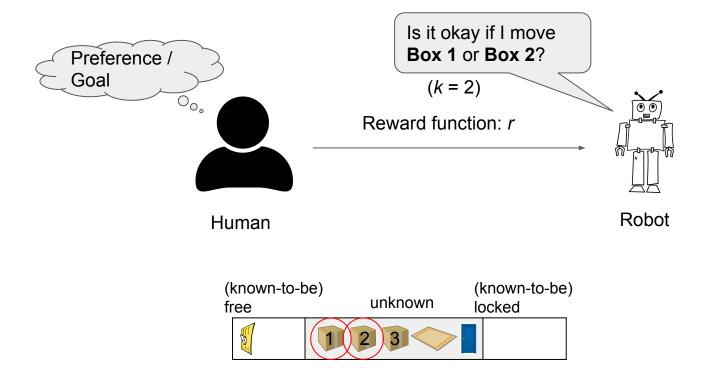
Problem Formulation: Factored Representation

The domain is a factored MDP and known to the robot. States are represented by a set of features $\{\phi_1, \phi_2, \dots, \phi_n\}$

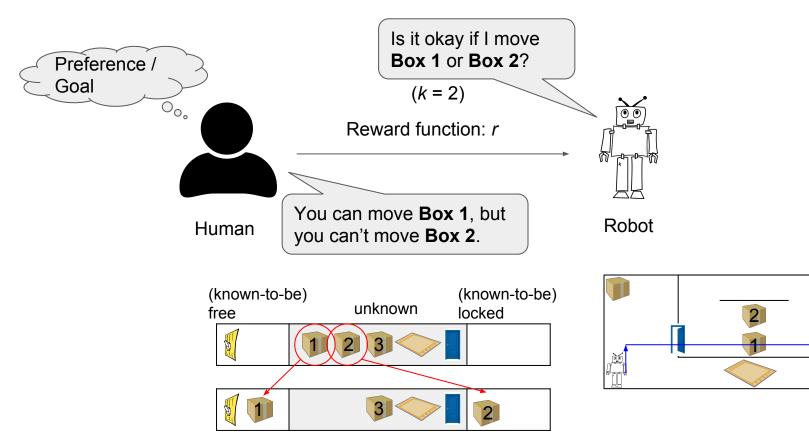


Negative side-effects arise when a **human's locked** feature is changed. **Safety constraints**: The robot never changes any **known-to-be-locked** or **unknown** features.

Problem Formulation: *k*-Feature Queries

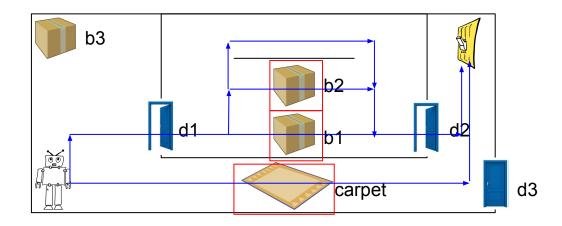


Problem Formulation: *k*-Feature Queries



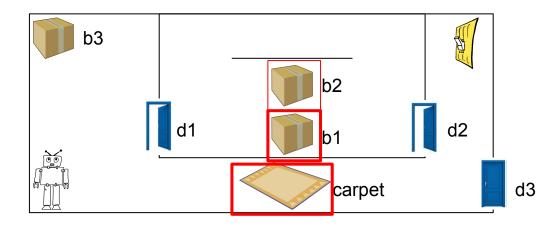
Method: A Two-Step Procedure

- Find the relevant features. Efficiently and provably finding all relevant features (Algorithm *DomPis* in the paper).
- Find an optimal *k*-feature query.



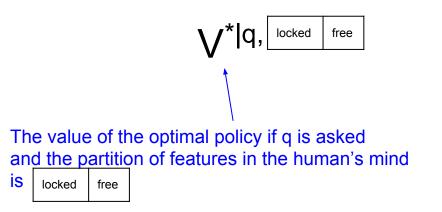
Method: A Two-Step Procedure

- Find the relevant features. Efficiently and provably finding all relevant features (Algorithm *DomPis* in the paper).
- Find an optimal *k*-feature query.

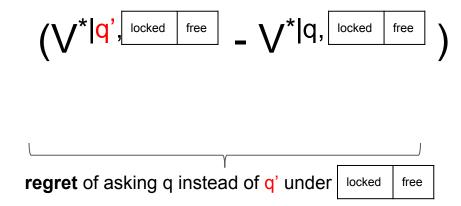


Example: k = 2

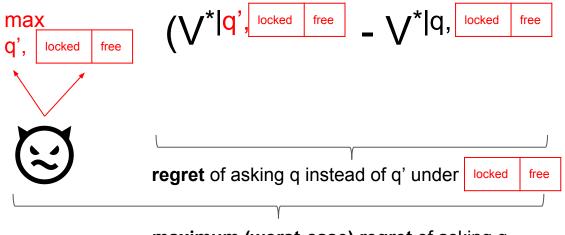
The objective is to find a query that has the **minimax regret**.



The objective is to find a query that has the minimax regret.



The objective is to find a query that has the minimax regret.



maximum (worst-case) regret of asking q

The objective is to find a query that has the minimax regret.



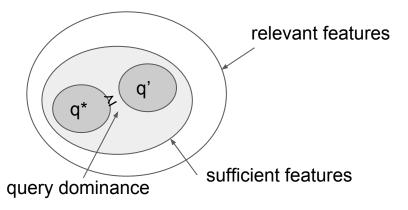
Find a Minimax-Regret *k*-Feature Query

Our algorithm *MMRQ-k* provably finds a minimax-regret query without evaluating all *k*-feature queries using the following techniques:

Early stopping when it finds a set of **sufficient features**.

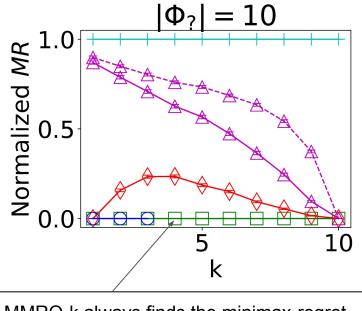
Pruning some unevaluated queries by query dominance.

(More details in the paper.)



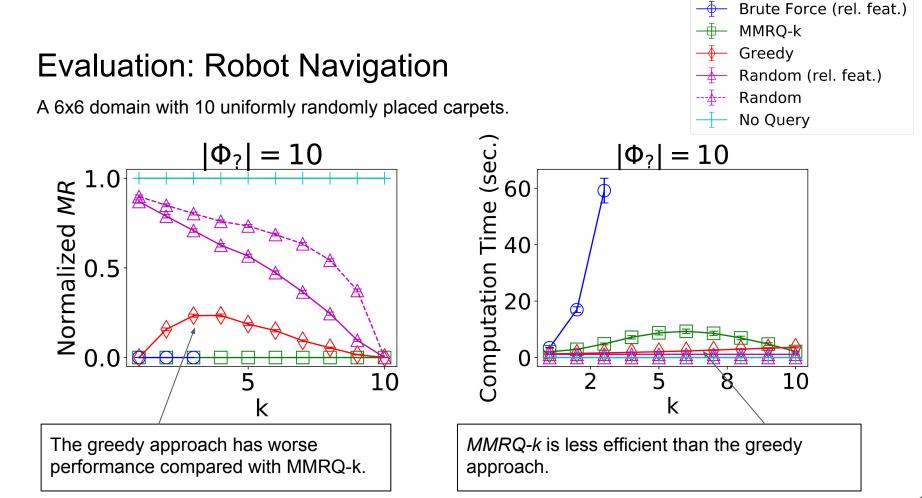
Evaluation: Robot Navigation

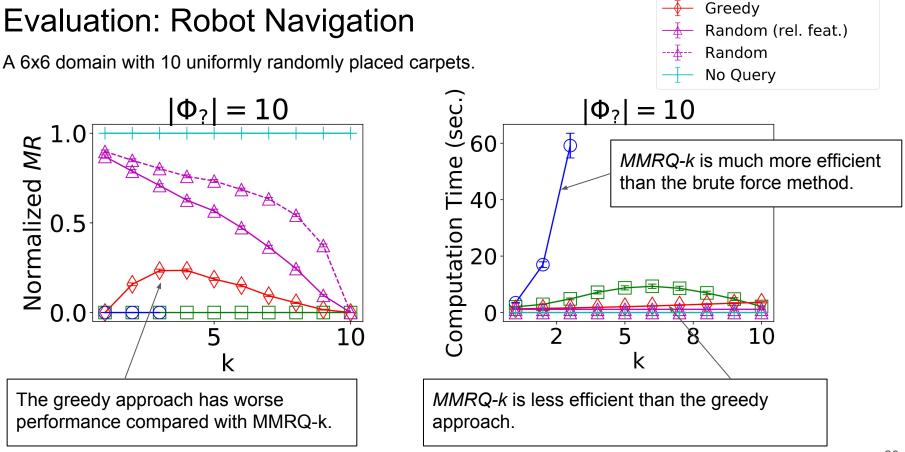
A 6x6 domain with 10 uniformly randomly placed carpets.



MMRQ-k always finds the minimax-regret query.

→ Brute Force (rel. feat.)
→ MMRQ-k
→ Greedy
→ Random (rel. feat.)
--↓ Random
→ No Query





Brute Force (rel. feat.)

MMRQ-k

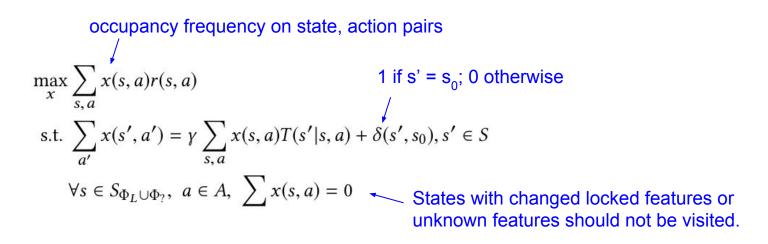
Summary

- Formulation of avoiding negative side-effects in factored MDPs.
- An algorithm that provably and efficiently finds relevant features.
- An algorithm that provably and efficiently finds minimax-regret queries given a limit on the number of features the robot can ask about.
- Future work: approximate methods; other changeability assumptions.

Backup Slides

Safely-Optimal Policy

A safely-optimal policy is the optimal policy that does not change locked features or unknown features. It can be found by solving a linear programming problem.

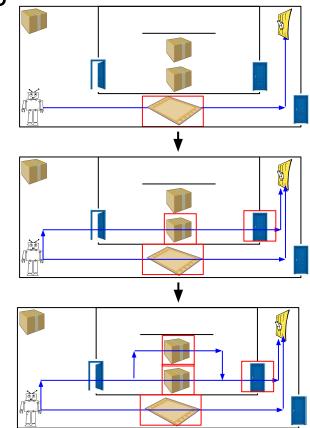


Construction of the Set of Dominating Policies

We use a greedy construction method to find all relevant features.

Correctness: Our algorithm finds all relevant features (and only relevant features).

Efficiency: Computation time is exponential in the number of relevant features in the worst case. The paper specifies a pruning rule to avoid considering all subsets of relevant features.



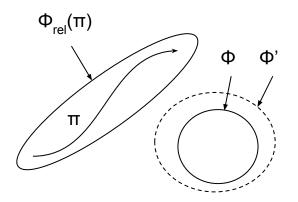
Construction of the Set of Dominating Policies: Algorithm

Algorithm DomPolicies

1: $\Gamma' \leftarrow \emptyset$ ▶ the initial set of dominating policies 2: $\Phi'_{rel} \leftarrow \emptyset$ ▶ the initial set of relevant features 3: *checked* ← \emptyset ▷ It contains $\Phi \subseteq \Phi'_{rel}$ we have examined so far. 4: $\beta \leftarrow \emptyset$ ▶ a pruning rule 5: $agenda \leftarrow powerset(\Phi'_{rel}) \setminus checked$ 6: while agenda $\neq \emptyset$ do $\Phi \leftarrow$ an element with the smallest cardinality from *agenda* 7: if satisfy (Φ, β) then 8: (find the safely-optimal policy that does not change Φ) 9: $\pi \leftarrow \arg \max_{\pi' \in \Pi_{\Phi}} V^{\pi'},$ ▶ by solving Eq. 1 10: if π exists then 11: $\Gamma' \leftarrow \Gamma' \cup \{\pi\}$ 12: add $(\Phi, \Phi_{rel}(\pi))$ to β 13: end if 14: end if 15: $\Phi'_{rel} \leftarrow \Phi'_{rel} \cup \Phi_{rel}(\pi)$ 16: agenda $\leftarrow powerset(\Phi'_{rel}) \setminus checked$ 17: checked \leftarrow checked $\cup \{\Phi\}$ 18: 19: end while 20: return Γ'

Correctness: guaranteed to find all relevant features.

Computational efficiency: exponential in the number of relevant features in the worst case. The efficiency can be improved with pruning:



Defined similar to Regan and Boutilier (2010)

Minimax-Regret k-Feature Queries

The **utility** of a *k*-feature query Φ_{a} when Φ_{c} are the changeable features.

$$u(\Phi_q, \Phi_C) = \max_{\pi \in \Pi_{\Phi_? \setminus \{\Phi_q \cap \Phi_C\}}} V^{\pi}$$

The **pairwise maximum regret** of asking Φ_{a} rather than $\Phi_{a'}$.

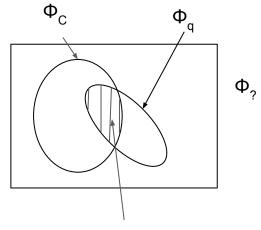
$$PMR(\Phi_q, \Phi_{q'}) = \max_{\Phi_C \subseteq \Phi_?} (u(\Phi_{q'}, \Phi_C) - u(\Phi_q, \Phi_C))$$

The **maximum regret** of asking Φ_{a} .

$$MR(\Phi_q) = \max_{\Phi_{q'} \subseteq \Phi_{rel}, |\Phi_{q'}|=k} PMR(\Phi_q, \Phi_{q'})$$

The **minimax-regret** *k*-feature query.

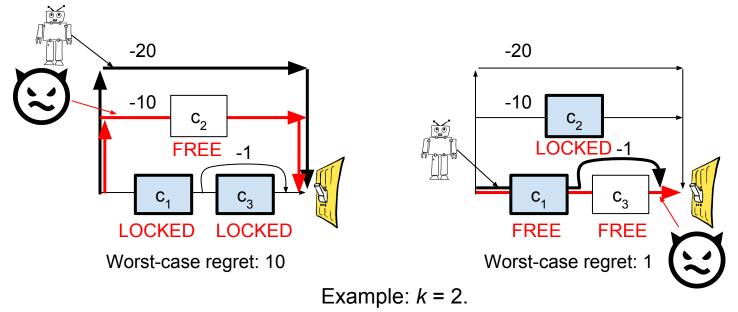
$$\Phi_q^{MMR} = \arg\min_{\Phi_q \subseteq \Phi_{rel}, |\Phi_q|=k} MR(\Phi_q)$$



Features changeable by the robot

The objective is to find a query that has the **minimax regret**.

A greedy approach based on a prior work (Viappiani and Boutilier, 2009) may not always find a minimax-regret query.



Motivated by Viappiani and Boutilier (2009).

Chain of Adversaries

An efficient greedy construction algorithm that is linear in *k*.

It may not find the minimax-regret query.

Algorithm CoA: Chain of adversaries

1: Initialize $\Phi_{q_0} \leftarrow \emptyset$, $i \leftarrow 0$. 2: while $|\Phi_{q_i}| < k$ and $(i = 0 \text{ or } \Phi_{q_{i-1}} \neq \Phi_{q_i})$ do 3: $k' \leftarrow k - |\Phi_{q_i}|$ 4: $\Phi_{q_{i+1}} \leftarrow \Phi_{q_i} \cup \Phi_{rel}(\pi_{\Phi_{q_i}}^{MR_{k'}})$ 5: $i \leftarrow i + 1$ 6: end while 7: return Φ_{q_i}

> Consider what features an adversary wants to change when we asks our current query, and add those features to our query.

Office Navigation: Domain Description

The robot is tasked to turn off a switch at a corner.

The domain is 6x6 with 10 uniformly randomly placed carpets.

The reward is 0 to for any location with a carpet, and uniformly random in [-1, 0] for any location without a carpet. So the robot prefers to walk on the carpets.

Each carpet corresponds to one unknown feature. The robot initially does not know if it can traverse any carpet.

-0.84	-0.16	-0.39	
-0.48	-0.94		-0.58
-0.02		-0.73	-0.24
	0.15		-0.49

(Illustration in a reduced size)

More Empirical Results

