
Minimax-Regret Querying on Side Effects for Safe Optimality
in Factored Markov Decision Processes

Shun Zhang, Edmund H. Durfee, and Satinder Singh
University of Michigan

Motivating Example

2

d1 d2b1

b2

carpet

b3

d3
Human

Turn off the switch.

Motivating Example

3

d1 d2b1

b2

carpet

b3

d3
Human

Turn off the switch.

Concerns: Policies often have side effects.

4

RobotHuman

Preference /
Goal

Reward function: r

The optimal policy
with no side effects
under r.

Baseline Performance

In this work, we allow the robot to query about the allowability of side effects.

Contributions

● We formulate the AI safety problem of avoiding negative side-effects in factored
MDPs.

● If the robot can ask one query about if some side-effects are allowable, we show how to
efficiently find a minimax-regret query.

5

The domain is a factored MDP and known to the robot.
States are represented by a set of features

Problem Formulation: Factored Representation

6

An example state:
(RobotLocation = intial_location,
Door1 = open,
Carpet = clean, …)

The domain is a factored MDP and known to the robot.
States are represented by a set of features

Negative side-effects arise when a human’s locked feature is changed.

Problem Formulation: Factored Representation

7

Features

free locked

Problem Formulation: Factored Representation

The domain is a factored MDP and known to the robot.
States are represented by a set of features

Negative side-effects arise when a human’s locked feature is changed.
Safety constraints: The robot never changes any known-to-be-locked or unknown
features.

8

(known-to-be)
free

unknown (known-to-be)
locked

free locked

Features

⊆
⊇

Problem Formulation: k-Feature Queries

RobotHuman

Preference /
Goal

Reward function: r

Is it okay if I move
Box 1 or Box 2?

(k = 2)

9

unknown
(known-to-be)
locked

1 2 3

(known-to-be)
free

Problem Formulation: k-Feature Queries

10

RobotHuman

Preference /
Goal

Reward function: r

Is it okay if I move
Box 1 or Box 2?

You can move Box 1, but
you can’t move Box 2.

(k = 2)

unknown
(known-to-be)
locked

1 2 3 1

(known-to-be)
free

1 23

2

d1 d2b1

b2

carpet

b3

d3

Method: A Two-Step Procedure

● Find the relevant features. Efficiently and provably finding all relevant features
(Algorithm DomPis in the paper).

● Find an optimal k-feature query.

11

d1 d2b1

b2

carpet

b3

d3

Method: A Two-Step Procedure

● Find the relevant features. Efficiently and provably finding all relevant features
(Algorithm DomPis in the paper).

● Find an optimal k-feature query.

12

Example: k = 2

Minimax-Regret Queries

13

The objective is to find a query that has the minimax regret.

(V*|q’, - V*|q, locked free locked free

The value of the optimal policy if q is asked
and the partition of features in the human’s mind
is locked free

Minimax-Regret Queries

14

The objective is to find a query that has the minimax regret.

(V*|q’, - V*|q,)

regret of asking q instead of q’ under

locked free

locked free

locked free

Minimax-Regret Queries

15

The objective is to find a query that has the minimax regret.

max
q’, locked free (V*|q’, - V*|q,)

maximum (worst-case) regret of asking q

locked free

regret of asking q instead of q’ under locked free

locked free

Minimax-Regret Queries

16

The objective is to find a query that has the minimax regret.

min
 q

max
q’, locked free (V*|q’, - V*|q,)

minimax regret

locked free

regret of asking q instead of q’ under locked free

maximum (worst-case) regret of asking q

locked free

Find a Minimax-Regret k-Feature Query

Our algorithm MMRQ-k provably finds a minimax-regret query without evaluating all
k-feature queries using the following techniques:
Early stopping when it finds a set of sufficient features.
Pruning some unevaluated queries by query dominance.
(More details in the paper.)

17

relevant features

sufficient features

q*
q’⪰

query dominance

Evaluation: Robot Navigation

18

MMRQ-k always finds the minimax-regret
query.

A 6x6 domain with 10 uniformly randomly placed carpets.

Evaluation: Robot Navigation

19

MMRQ-k is less efficient than the greedy
approach.

A 6x6 domain with 10 uniformly randomly placed carpets.

The greedy approach has worse
performance compared with MMRQ-k.

Evaluation: Robot Navigation

20

MMRQ-k is less efficient than the greedy
approach.

A 6x6 domain with 10 uniformly randomly placed carpets.

MMRQ-k is much more efficient
than the brute force method.

The greedy approach has worse
performance compared with MMRQ-k.

Summary

● Formulation of avoiding negative side-effects in factored MDPs.
● An algorithm that provably and efficiently finds relevant features.
● An algorithm that provably and efficiently finds minimax-regret queries given a limit on

the number of features the robot can ask about.
● Future work: approximate methods; other changeability assumptions.

21

Backup Slides

22

Safely-Optimal Policy

A safely-optimal policy is the optimal policy that does not change locked features or unknown
features. It can be found by solving a linear programming problem.

23

occupancy frequency on state, action pairs

1 if s’ = s0; 0 otherwise

States with changed locked features or
unknown features should not be visited.

Construction of the Set of Dominating Policies

24

We use a greedy construction method to find all
relevant features.

Correctness: Our algorithm finds all relevant features
(and only relevant features).

Efficiency: Computation time is exponential in the
number of relevant features in the worst case.
The paper specifies a pruning rule to avoid considering
all subsets of relevant features.

Construction of the Set of Dominating Policies: Algorithm

Correctness: guaranteed to find all relevant
features.

Computational efficiency: exponential in the
number of relevant features in the worst case.
The efficiency can be improved with pruning:

25

π

Φrel(π)

Φ Φ’

Minimax-Regret k-Feature Queries

26

The pairwise maximum regret of asking Φq rather than Φq’.

The maximum regret of asking Φq.

The minimax-regret k-feature query.

Defined similar to Regan and Boutilier (2010)

The utility of a k-feature query Φq when ΦC are the changeable features. Φq
ΦC

Φ?

Features changeable
by the robot

Minimax-Regret Queries

27

c1

c2

-10

c3

-20

-1

c1

c2

-10

c3

-20

-1

Worst-case regret: 10 Worst-case regret: 1

Example: k = 2.

The objective is to find a query that has the minimax regret.
A greedy approach based on a prior work (Viappiani and Boutilier, 2009) may not always find
a minimax-regret query.

LOCKED LOCKED

LOCKED

FREE

FREE

FREE

Chain of Adversaries

An efficient greedy construction
algorithm that is linear in k.

It may not find the minimax-regret
query.

28

Motivated by Viappiani and Boutilier (2009).

Consider what features an adversary wants to
change when we asks our current query, and add
those features to our query.

Office Navigation: Domain Description

The robot is tasked to turn off a switch at a corner.

The domain is 6x6 with 10 uniformly randomly placed
carpets.

The reward is 0 to for any location with a carpet, and
uniformly random in [-1, 0] for any location without a
carpet. So the robot prefers to walk on the carpets.

Each carpet corresponds to one unknown feature. The
robot initially does not know if it can traverse any carpet.

29

-0.84 -0.16 -0.39

-0.48 -0.94 -0.58

-0.02 -0.73 -0.24

-0.15 -0.49

(Illustration in a reduced size)

More Empirical Results

30

